skip to main content


Search for: All records

Creators/Authors contains: "Hsu, Tze-Gang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Polymers with low ceiling temperatures (Tc) are highly desirable as they can depolymerize under mild conditions, but they typically suffer from demanding synthetic conditions and poor stability. We envision that this challenge can be addressed by developing high-Tcpolymers that can be converted into low-Tcpolymers on demand. Here, we demonstrate the mechanochemical generation of a low-Tcpolymer, poly(2,5-dihydrofuran) (PDHF), from an unsaturated polyether that contains cyclobutane-fused THF in each repeat unit. Upon mechanically induced cycloreversion of cyclobutane, each repeat unit generates three repeat units of PDHF. The resulting PDHF completely depolymerizes into 2,5-dihydrofuran in the presence of a ruthenium catalyst. The mechanochemical generation of the otherwise difficult-to-synthesize PDHF highlights the power of polymer mechanochemistry in accessing elusive structures. The concept of mechanochemically regulating theTcof polymers can be applied to develop next-generation sustainable plastics.

     
    more » « less
  2. Abstract

    The accumulation of plastic waste, due to lack of recycling, has led to serious environmental pollution. Although mechanical recycling can alleviate this issue, it inevitably reduces the molecular weight and weakens the mechanical properties of materials and is not suitable for mixed materials. Chemical recycling, on the other hand, breaks the polymer into monomers or small‐molecule constituents, allowing for the preparation of materials of quality comparable to that of the virgin polymers and can be applied to mixed materials. Mechanochemical degradation and recycling leverages the advantages of mechanical techniques, such as scalability and efficient energy use, to achieve chemical recycling. We summarize recent progress in mechanochemical degradation and recycling of synthetic polymers, including both commercial polymers and those designed for more efficient mechanochemical degradation. We also point out the limitations of mechanochemical degradation and present our perspectives on how the challenges can be mitigated for a circular polymer economy.

     
    more » « less
  3. Abstract

    The accumulation of plastic waste, due to lack of recycling, has led to serious environmental pollution. Although mechanical recycling can alleviate this issue, it inevitably reduces the molecular weight and weakens the mechanical properties of materials and is not suitable for mixed materials. Chemical recycling, on the other hand, breaks the polymer into monomers or small‐molecule constituents, allowing for the preparation of materials of quality comparable to that of the virgin polymers and can be applied to mixed materials. Mechanochemical degradation and recycling leverages the advantages of mechanical techniques, such as scalability and efficient energy use, to achieve chemical recycling. We summarize recent progress in mechanochemical degradation and recycling of synthetic polymers, including both commercial polymers and those designed for more efficient mechanochemical degradation. We also point out the limitations of mechanochemical degradation and present our perspectives on how the challenges can be mitigated for a circular polymer economy.

     
    more » « less
  4. Abstract

    While depolymerizable polymers have been intensely pursued as a potential solution to address the challenges in polymer sustainability, most depolymerization systems are characterized by a low driving force in polymerization, which poses difficulties for accessing diverse functionalities and architectures of polymers. Here, we address this challenge by using a cyclooctene‐based depolymerization system, in which thecis‐to‐transalkene isomerization significantly increases the ring strain energy to enable living ring‐opening metathesis polymerization at monomer concentrations ≥0.025 M. An additionaltrans‐cyclobutane fused at the 5,6‐position of the cyclooctene reduces the ring strain energy of cyclooctene, enabling the corresponding polymers to depolymerize into thecis‐cyclooctene monomers. The use of excess triphenylphosphine was found to be essential to suppress secondary metathesis and depolymerization. The high‐driving‐force living polymerization of thetrans‐cyclobutane fusedtrans‐cyclooctene system holds promise for developing chemically recyclable polymers of a wide variety of polymer architectures.

     
    more » « less
  5. Abstract

    While depolymerizable polymers have been intensely pursued as a potential solution to address the challenges in polymer sustainability, most depolymerization systems are characterized by a low driving force in polymerization, which poses difficulties for accessing diverse functionalities and architectures of polymers. Here, we address this challenge by using a cyclooctene‐based depolymerization system, in which thecis‐to‐transalkene isomerization significantly increases the ring strain energy to enable living ring‐opening metathesis polymerization at monomer concentrations ≥0.025 M. An additionaltrans‐cyclobutane fused at the 5,6‐position of the cyclooctene reduces the ring strain energy of cyclooctene, enabling the corresponding polymers to depolymerize into thecis‐cyclooctene monomers. The use of excess triphenylphosphine was found to be essential to suppress secondary metathesis and depolymerization. The high‐driving‐force living polymerization of thetrans‐cyclobutane fusedtrans‐cyclooctene system holds promise for developing chemically recyclable polymers of a wide variety of polymer architectures.

     
    more » « less